Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolism by humans and rats.
نویسندگان
چکیده
Pyrethroids are neurotoxic pesticides whose pharmacokinetic behavior plays a role in their potency. This study examined the elimination of esfenvalerate and deltamethrin from rat and human liver microsomes. A parent depletion approach in the presence and absence of NADPH was used to assess species differences in biotransformation pathways, rates of elimination, and intrinsic hepatic clearance. Esfenvalerate was eliminated primarily via NADPH-dependent oxidative metabolism in both rat and human liver microsomes. The intrinsic hepatic clearance (CL(INT)) of esfenvalerate was estimated to be 3-fold greater in rodents than in humans on a per kilogram body weight basis. Deltamethrin was also eliminated primarily via NADPH-dependent oxidative metabolism in rat liver microsomes; however, in human liver microsomes, deltamethrin was eliminated almost entirely via NADPH-independent hydrolytic metabolism. The CL(INT) for deltamethrin was estimated to be 2-fold more rapid in humans than in rats on a per kilogram body weight basis. Metabolism by purified rat and human carboxylesterases (CEs) were used to further examine the species differences in hydrolysis of deltamethrin and esfenvalerate. Results of CE metabolism revealed that human carboxylesterase 1 (hCE-1) was markedly more active toward deltamethrin than the class 1 rat CEs hydrolase A and B and the class 2 human CE (hCE-2); however, hydrolase A metabolized esfenvalerate 2-fold faster than hCE-1, whereas hydrolase B and hCE-1 hydrolyzed esfenvalerate at equal rates. These studies demonstrate a significant species difference in the in vitro pathways of biotransformation of deltamethrin in rat and human liver microsomes, which is due in part to differences in the intrinsic activities of rat and human carboxylestersases.
منابع مشابه
Identification of rat and human cytochrome p450 isoforms and a rat serum esterase that metabolize the pyrethroid insecticides deltamethrin and esfenvalerate.
The metabolism of (alphaS)-cyano-3-phenoxybenzyl (1R, 3R)-cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylate (deltamethrin) and (alphaS)-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methylbutyrate (esfenvalerate) by rat and human liver microsomes differs with respect to the biotransformation pathway (oxidation versus hydrolysis) responsible for their clearance. This study aims to furth...
متن کاملSpecies differences in the in vitro metabolism of deltamethrin and esfenvalerate : Differential
متن کامل
The protective effect of Zataria multiflora Boiss. hydroalcoholic extract on TNF-α production, oxidative stress, and insulin level in streptozotocin-induced diabetic rats
Objective: Oxidative stress leads to reactive oxygen species (ROS) overproduction, which causes tissue injury in diabetic patients. The aim of this study was to evaluate the effects of Zataria multiflora extract on TNF-α, oxidative stress products, and insulin levels as well as lipid profile in diabetic rats. Materials and Methods: Rats were randomly divided into 6 groups of 10 animals. Diabete...
متن کاملبررسی اثر ویتامین E بر استرس اکسیداتیو و اختلال متابولیسمی ناشی از انسداد حاد و یکطرفه میزنای در رت بیهوش
Background: Obstructive nephropathy has been associated with disorders in metabolism state and oxidative balance of kidney. Stress oxidative play a key role in the pathophysiological processes of renal diseases. The objective of this study was to investigate effects of vitamin-E, as a powerful antioxidant, on renal oxidative stress and metabolism defect induced by 24-hr unilateral ureteral obst...
متن کاملEffect of maternal variable stress on oxidative status and glucose metabolism in pubertal male rats
Introduction: Metabolic disorders are affected by negative stress experiences in the early stages of life. Accordingly, in this study, the effects of stress during pregnancy on oxidative status and glucose homeostasis in pubertal male Wistar rats were investigated. Materials and Methods: After pregnancy, female rats (200±30 g) were divided into 2 groups (6 rats per group) of stress and non-stre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 34 10 شماره
صفحات -
تاریخ انتشار 2006